SOFTWARE SPECIFICATIONS
FOR THE 99/4 DISK PERIPHERAL

CONSUMER GROUP

MAIL STATION 5880

2301 N. UNIVERSITY
LUBBOCK, TEXAS 79414

COPYRIGHT 1980
TEXAS INSTRUMENTS
ALL RIGHTS RESERVED.

MARCH 28, 1983

Contents

INTRODUCTION
APPLICABLE DOCUMENTS
SOFTWARE DESIGN CONSIDERATIONS

FUNCTIONAL OVERVIEW

41 Level 1 Feabtres . . . o v i v i i v it e e et e et ettt e e e e e e
4.2 Level 2 Fealtures i i i i v i i it it e e e e e e e e e e e e e e
4.3 Level 3Feattires v v v v i vt e st bt e e e e e e e e
44 Uity Routines . o« & v v i v v it e et et et e e e e e e e e e e e

DETAILED OPERATIONAL SPECIFICATIONS

5.1 Record Formats. i i i i it i et et s s e et e e et e e
5.1.1 Variable Length Records e e e e e e e
5.1.2 Fixed Length Records

5.2 AccessMethods o v i i i it e e e e e e e e e e e e e
5.2.1 Physical I/O . . o o o e e e e e e e e e e e e
5.2.2 Sequential Access. i e e e e
5.2.3 Relative ACCess o i i it e e e e e e e e e e e e e

5.3 Library Organization . . .« o v v v i v i it it e e e e e e e e e e e

5.4 Internal Data Structure Overview v o v 0 v v it it it e e e e e e .
5.4.1 Physical Device Format @it nna.
5.4.2 Volume Information Block i
54.3 Allocation Bit Map i i e e e e e e e
5.4.4 File Descriptor Record v v o vt i i e e e e e
545 FileControlBlock 0 v i it i i e e e e e e e e e e
5.4.6 File Descriptor Index Record i

DETAILED DISKETTE FORMAT SPECIFICATION

6.1 Physical Diskette Format i v v v v v e o vt ot e e e et e e e e
6.1.1 Volume Information Block (VIB)
6.1.2 File Descriptor Index Record
6.1.3 File Descriptor Records . . .« v o v v v v v i i it e e et e e e e e e

6.2 DataFile Allocation i it i i it ittt e e e e e

6.3 Program File Allocation 0 i it it i i e e et e e e e

11
11
11
12
12

13
13
13
13
14
14
14
14
14
15
15
15
15
15
16
16

2 CONTENTS

7 MEMORY USAGE 23
7.1 Drive ControlInformation v 4 v v v v v v it i e e e e e e e e 23
7.2 File Allocation Information 23
73 DataBuffering e 26
74 VDP Memory Layout o o i i it e et e e e e . 26

8 CATALOG FILE ACCESS 27

CONTENTS 3

The information and/or drawings set forth in this document and all rights in and to inventions
disclosed herein and patents which might be granted thereon disclosing or implying the materials,
methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments.

No disclosure of information or drawings shall be made to any other person or organization
without prior consent of Texas Instruments. VERSION 2.0

CONTENTS

Chapter 1

INTRODUCTION

This document is intended to give a final operational specification of the ROM based software for
the TI 99/4 Disk peripheral. This ROM based software is also called the disk device service routine
(DSR).

This hardware design features a Western Digital 1771 Floppy Disk controller. The disk con-
troller has been designed to support any 5.25 floppy disk drive with the minimum head step of 20
milliseconds. More hardware details can be found in the Home Computer Disk Controller Prod-
uct Specification. Beware that “disk controller” is sometimes used to refer to the software and
sometimes to the hardware.

The disk peripheral is ROM based. The ROM code is executed by the TMS 9900 located in
the main console. Access to the disk peripheral software is facilitated through the file management
system, as specified in the File Management Specification for the 99/4 Home Computer.

CHAPTER 1. INTRODUCTION

Chapter 2

APPLICABLE DOCUMENTS

e File Management Specification for the 99/4 Home Computer (version 2.5, Revised 25 February
1983)

o Home Computer BASIC Language Specification (Revision 4.1, 12 April 1979)

Home Computer Disk Peripheral Hardware Specification
Functional Specification for the 99/4 Disk Peripheral (Version 3.0, Revised 28 March 1983)

L]

GPL Interface Specification for the 99/4 Disk Peripheral (Version 2.0, Revised 28 Mazch
1983)

CHAPTER 2. APPLICABLE DOCUMENTS

Chapter 3

SOFTWARE DESIGN
CONSIDERATIONS

The disk peripheral software has been designed to support all options facilitated by the file man-
agement system, except for the SCRATCH RECORD option. The supported options include:

o Sequential and Relative record (random access) files

¢ Fixed and Variable length records

INTERNAL and DISPLAY file types

¢ QUTPUT, INPUT, UPDATE, and APPEND access modes

o Program LOAD and SAVE functions

Aside from these functions, a separate disk utility cartridge, the Disk Manager, supports the
foliowing utility programs:

e Single disk backup

¢ Disk-to-disk copy/backup

o Disk initialization/formatting
e Disk catalog

e Disk rename

¢ Disk tests

e File copy

e File protection status

e Selective file deletion

The above mentioned utilities are accessible through menus, similar to the standard program
selection menu featured by the 99/4 console. The utilities are currently available in three lan-
guages, English, French, and German. Provisions are taken for future expansion of these language
capabilities.

More information about the Disk Manager is provided in the Texas Instruments Home Computer
Disk Memory System manual.

19

CHAPTER 3. SOFTWARE DESIGN CONSIDERATIONS

Chapter 4

FUNCTIONAL OVERVIEW

This section will provide a quick sketch of the functions of the disk peripheral software in each of
its implementation levels. Each level uses the features implemented in a lower level, and builds new
features with the building blocks provided by the lower levels.

4.1 Level 1 Features

s Disk formatting functions
¢ Record read/write functions
¢ Soft error correction functions

¢ Communication with the FD 1771 chip

Level 1 is the only level that must be familiar with the hardware, thus this implementation
level allows for abstraction from the disk hardware. Every higher level will only know the disk as
a linear storage device, addressed by physical record number, disk unit number, and read or write
operation. For test purposes this level utilizes a DX10 relative record file, each record of which
represents one disk sector. This allows for DX10 sirnulation of the disk peripheral software without
a need for availability of the actual hardware. A full disk simulation is operational under the DX10
system GPL simulator (also called a GPL debugger).

Future disk products that may wish to use the current disk software, such as the SA200 design,
generally only need to replace this part of the disk software. All the higher levels have been designed
to be independent of the actual physical disk structure known at this level, except for the sector
size, which is assumed to be 256 bytes. For a single density 128 bytes sector design, the blocking
factor would be 2, i.e. every sector as seen from the higher levels take up 2 sectors at Level 1.

4.2 Level 2 Features

* All Level 1 features, plus:
¢ Data access by filename and physical record displacement
o File creation and deletion

o Mixed hybrid file format

11

12 CHAPTER 4. FUNCTIONAL OVERVIEW

¢ Dynamically extendible file allocation

This level creates the actual file concept. Each file is known by its name and the displacement
of the physical record within the file. Each physical record is defined as one disk sector (256 bytes).

A directory and a bitmap are maintained on every disk to allow for a file and data record
management (creation and deletion). The file format available at this level is a mixture of contiguous
and noncontiguous file formats, called the mixed hybrid format. Noncontiguous files {(fragmented)
carry a lot of overhead in the form of pointers to the location of each data record of the file, in case
relative access is required. The files on this level are allocated in clusters of contiguous records.
These clusters are expanded if possible, whenever new data records are requested. If a cluster can
not be expanded any more, a new cluster is started.

4.3 Level 3 Features

* All Level 2 features, plus:
¢ Fixed and Variable record formats
e Relative and Sequential access methods
e Program and data files
o Internal and ASCII data types

The addition of relative/sequential access methods and fixed and variable record formats com-
pletes the disk management software. The software at this level takes care of the blocking of one or
more logical records into a physical record. For relative access files it computes the physical record
in which the logical record is located, updates that record, and passes the physical record back to
Level 2 file update routines.

4.4 Utility Routines

The ROM code also provides the subprograms for special utility routines which do not use the
standard file I/O system. These subprograms, which are provided through the GPL subprograms
mechanism, are:

e Direct Level 2 file access

e Logical sector/Allocatable Unit (AU} access
e File rename

s File protection modification

¢ Disk formatting

These subprograms will be provided in the form of GPL subprograms, i.e. assembly language
routines located in ROM. These GPL subprograms are specified in the GPL Interface Specification

for the 99/4 Disk Peripheral.

Chapter 5

DETAILED OPERATIONAL
SPECIFICATIONS

This section will go into the operational specifications in more detail. Record format and access
methods, as well as file types will be discussed.

5.1 Record Formats

A file attribute specified at the time of creation is the record format. This attribute describes the
logical organization of the file. Two such formats are currently supported by the disk software:

1. Variable length records

2. Fixed length records

5.1.1 Variable Length Records

In applications which must store data structures of unpredictable length, the variable length record
format provides an economical way to use the disk space. Since the length of the records is variable,
the length of each individual record must be recorded together with the data. This can be done by
providing each record with a pointer to the next record, or equivalently, by providing each record
with a header byte indicating the number of bytes required to represent the data structure.

Variable length records can also be used to record fixed length data structures in which repeated
character strings are expected (i.e. trailing blanks). Such a fixed length structure can become
variable by virtue of data compression. However, the current implementation of the disk peripheral
software does not perform any data compression.

5.1.2 Fixed Length Records

Records of fixed (constant) length can be used if relative access to a particular records is desired.
When the information structures to be recorded are almost or exactly equal in length to the length
of the record size, fixed record lengths are appropriate, since there is no overhead associated with
record headers or compression indicators. The records consist of an unmodified copy of the data
as presented in the user’s data buffer, This is obviously more efficient use of bulk storage devices
where relative access is supported by the medium.

13

14 CHAPTER 5. DETAILED OPERATIONAL SPECIFICATIONS

As we shall see in the next section, fixed length records are also very convenient for relative
access, since their length is a known quantity.

5.2 Access Methods

Several methods of accessing data in files are supported. These methods are:
o Physical I/O
o Sequential access

o Relative access

5.2.1 Physical I/0

In the physical I/O method, the data on the disk is considered by the disk software to be organized
in blocks of 256 bytes each, Each byte contains any of 256 possible 8-bit combinations, with no
attempt to interpret at data transfer time. Any existence of records or files is completely ignored
when this access method is used.

The rest of the disk software reduces all access methods to physical I/0, by converting logical
record numbers to track/sector data, which can be used to specify the disk sector that is to be
transferred by the physical 1/0 software. Physical I/0O has been made available to GPL software
only in the form of an assembly language subprogram.

5.2.2 Sequential Access

When the data records in a file are accessed strictly in the order of increasing addresses on the
medium, the records are said to be sequentially accessed. This is typically the access method
associated with magnetic tape or other linear storage media.

The data transfer parameters do not specify a physical record number. It is implied that the
logical record currently indicated in some data transfer pointer, is the one desired. Rewind /Restore
operations are implicitly or explicitly done, to set such beginning of the file, prior to first data
transfer. As each logical record is transferred, the pointer moves to the first byte of the following
one possible the length indicator).

5.2.3 Relative Access

This access method, also called random access, allows data referenced by logical record number.
Logieal data records may be accessed in any sequence, without regard to the order in which they
were written, or their relative position in the file.

Since the disk software must be able to locate a record based solely on its number, relative access
can be supported on indexed files or on fixed length files only. Indexed files are not supported in
this implementation, so the relative access method is supported for the fixed length files only.

5.3 Library Organization

The library organization implemented in the disk software only supports a single level library. This
implies that no file can be of the catalog type (a file pointing to other files). Each file can be
identified by a single name, for example:

54. INTERNAL DATA STRUCTURE OVERVIEW 15

DSK1i.FILENAME

specifies a file called FILENAME on the diskette in drive one.

Since this approach prohibits access of a catalog file as such, a semi-catalog file has been
created. This file is of the fixed length, relative access type. It contains 128 records, each containing
information about the associated catalog entry. This semi-catalog file, which will be described in
more detail in SECTION B, can be accessed as:

DSK1. or DSK.VOLNAME. a general file, without a file name,

Notice that all general file operations have been defined for the catalog file. Only the stan-
dard OPEN, READ, and CLOSE calls are supported. All other operations, such as DELETE,
RESTORE, WRITE, and EOF, are illegal, and will cause an error to be returned.

5.4 Internal Data Structure Overview

This section describes the internal data structure implemented on the disk peripheral. A description
of the external data structure can be found in the File Management Specification for the 99/4 Home
Computer.

5.4,1 Physical Device Format

The physical device is logically subdivided in Allocatable Units (AUs). An AU is defined to be an
integral number of physical records on the device. The total number of AUs on any device should
be less than 4096 (i.e., each AU can be addressed by a 12 bit word). AUs are numbered with zero
origin, the first AU is numbered 0.

The physical record length is the block of data read from or written fo the device at any one
time. For the disk peripheral, both the AU and the physical record are currently equivalent to one
disk sector (256 bytes).

5.4.2 Volume Information Block

The Volume Information Block (VIB) is located at AU number 0. If this AU is bad, the entire
device is considered bad. This block contains configuration data as required by the disk software,
such as available number of AUs, volume identification field, and format information.

Most of the VIB has been allocated for the Allocation Bit Map.

5.4.3 Allocation Bit Map

The Allocation Bit Map is used to indicate the availability of individual allocation units. A binary 1
in a bit position indicates that the allocation unit associated with that bit has been allocated. The
first bit (bit 0) is associated with AU 0, the second bit with AU 1, etc. During disk initialization,
bits corresponding to system reserved AUs, non-existant AUs, and bad AUs, are set to one. All
other bits are set to zero.

5.4.4 File Descriptor Record

The File Descriptor Record (FDR) is used to map the filenames into physical locations of the files
on the disk. Each entry contains information such as filename, file type, record type, data type,
location, and size information for the file.

16 CHAPTER 5. DETAILED OPERATIONAL SPECIFICATIONS

5.4.5 File Control Block

The File Control Block (FCB) is a copy of the FDR that is maintained in memory while the file is
open. In addition to the FDR information, the FCB contains some up-to-date file information.

5.4.6 File Descriptor Index Record

The (FDIR) enables the system to keep track of the location of each FDR on the disk. It contains

alphabetically sorted pointers to each FDR.
The FDIR. is located at AU number 1. If this AU is bad, then the entire disk is considered bad.

Chapter 6

DETAILED DISKETTE FORMAT
SPECIFICATION

The diskettes used on the Home Computer Disk Peripheral has the following specs:
o Capacity 92160 bytes per disk
2304 Tbytes per track
256 bytes per sector
9 sectors per track

e Encoding method FM Single Density Recording

o Mini diskette type SA 104 (ANSI standard 5.25)

The specified diskette contains 360 sectors of 256 bytes each. In the remainder of this chapter
each sector will be addressed as if the diskette was a linear medium, i.e. track 0 sector 0 will be

sector 0 and track 39 sector 8 equals sector 359.
The following section contains a description of the logical structure on each diskette in terms

of records.

6.1 Physical Diskette Format

The general diskette format used in the 99/4 Disk Peripheral is the following:
Sector contains the VIB. This block contains general information like:

¢ Volume Name
e Number of available AUs
e Number of sectors/tracks

e Allocation Bit Map

Sector 1 contains pointers to FDRs. Sector 2 thru 359 contain FDRs and data blocks. The FDRs

contain general information about the file, such as:

17

18 CHAPTER 6. DETAILED DISKETTE FORMAT SPECIFICATION

e File name
o File status data

e File data access blocks

6.1.1 Volume Information Block (VIB)

As mentioned earlier, this block contains general information about the disk. A more detailed
description of each entry and its contents will be given in this section.

000 001
002 063
004 DISK VOLUME NAME 00b
006 007
008 009
010 TOTAL NUMBER OF AUs 011
012 [# SECTORS / TRACK | _ “D” 013
014 ILS” “K” 015
016 “PROTECTION” # TRACKS / SIDE 017
018 | # OF SIDES - DENSITY 019
020 021
RESERVED
054 055
056 ALLOCATION 057
BIT
254 MAP 255

Bytes 0-9 contain the volume name of the diskette. The volume name can be any combination of
ten ASCII characters, except for the space or period characters and the null character (ASCII
code 0). The name is space filled to the right in case of less than 10 characters. The volume
name must contain at least one non-space character.

Bytes 10-11 give the total number of AUs on the volume. This datum should match the allocation
bitmap.

Byte 12 indicates the number of sectors per track.

Bytes 13-15 contain ASCII code for “DSK”, which is used by the disk manager software to check
if the diskette has been initialized.

Byte 16 contains the ASCII code for “P” if the diskette is protected (a protected disk is also
called a proprietary disk), otherwise this byte contains a >20.

Byte 17 indicates the number of tracks per side.
Byte 18 indicates the number of formatted sides on a disk.

Byte 19 indicates the density of the disk.

6.1. PHYSICAL DISKETTE FORMAT 19

Bytes 20-55 are reserved for future expansion like date and time of creation. In the current
version of the disk software these bytes are set to zero.

Bytes 56-255 contain the allocation bitmap. This 200 byte map can control up to 1600 256 byte
records (total controllable capacity equals 400K bytes), which make it usable for a double
density double sided disk. The disk allocation system uses a conventional method of allocating
disk space called Bit Maps. Each bit in the bit maps represents one sector on the disk. A
logical one in the bit maps means that the corresponding sector has been used. A zero means
that the sector is still available.

The volume name can be used as an alternative to the actual disk drive name, i.e. the user can
gpecify a disk drive in either of the following ways:

DSK.VOLNAME. FILENAME or DSK1.FILENAME

If the volume name is specified, rather than the physical drive number, the system will look in
sequence on every drive in the system, until it finds the specified volume. If more than one volume
of the same name exists, the drive with the lowest drive identification number will be assigned,

6.1.2 File Descriptor Index Record

The FDIR contains up to 127 two byte entries, each pointing to a file descriptor record. These
pointers are alphabetically sorted according to the file name in the associated file descriptor record.
The pointer list starts at the beginning of this block, and ends with a zero entry.

Since the file descriptors are alphabetically sorted in this block, a binary search method can be
used to find any given file name, limiting the maximum number of disk searches to seven if more
than 63 files are defined. In general if between 2N~ and 2N files are defined, a file search will take
at most N disk searches. To obtain faster directory search response tirnes, the systemn will prefer
to allocate data blocks in the area above AU number 34. Only if no AU can be allocated in that
area will the disk data block allocator start allocating blocks in the AU area 2-33.

6.1.3 File Descriptor Records

The FDR countains general information about the file. All the information the system needs to
know to access and update the file has to contained in the FDR.

20 CHAPTER 6. DETAILED DISKETTE FORMAT SPECIFICATION

THE PHYSICAL LAYOUT OF THE FDR 1S:

000 | 001
002 003
004 FILE NAME 005
006 007
008 009
010 RESERVED 011

012 | FILE STATUS FLAGS | # of RECORDS / AUs 013
014 | # of LEVEL 2 RECORDS CURRENTLY ALLOCATED | 015
016 | END OF FILE OFFSET | LOGICAL RECORD SIZE | 017
018 | # of LEVEL 3 RECORDS CURRENTLY ALLOCATED | 019

020 021
RESERVED

026 027

028 DATA CHAIN 029

254 POINTER BIL.OCKS 255

Bytes 0-9 contain a file name up to ten characters in length.

Bytes 10-11 are reserved for future expansion of the data chain pointers through linkage to a
data chain pointer block chain. In the current version these bytes are always zero.

Byte 12 contains the file status flags. These flags are to be interpreted as follows (bit 0 is the
least significant bit):
Bit # Description
0 Program/data file indicator

0=Data file
1=Program file

1 Binary/ASCII data
0=ASCII data (DISPLAY file)
1=Binary data (INTERNAL or program file)

2 Reserved for future data type expansion

3 PROTECT flag
0=Not protected
1=Protected

4-6 Reserved for future expansion

7 FIXED/VARJABLE flag
0=Fixed length records 1=Variable length records

6.2. DATA FILE ALLOCATION 21

Byte 13 contains the number of logical records per AU.
Bytes 14-15 contain the number of logical records allocated on level 2 (256 byte records).

Byte 16 contains the EOF offset within the highest physical AU for variable length record files
and program files.

Byte 17 contains the logical record size in bytes. In case of variable record lengths, this entry will
indicate the maximum allowable record size.

Bytes 18-19 contain the number of records allocated on level 3. For variable length records, this
entry is replaced with the number of level 2 records actually used. (Note: These bytes in this
entry are in reverse order.)

Bytes 20-27 have been reserved for future expansion. They will be fixed to 0 in this implemen-
tation of disk peripheral software.

Bytes 28-255 contain 3 byte blocks indicating the clusters that have been allocated for the file.
The first 12 bits in each entry indicate the address of the first AU in the cluster. The second
12 bits indicate the highest logical record offset in the cluster of contiguous records. This
indication has been chosen, rather than the number of data records in the chain, since it
reduces the amount of computation required for relative record file access.

The following diagram shows how each 3 byte entry relates to the address of the first AU and
the highest logical record offset in the cluster.

BYTE 1 |N2|N1 BYTE 2 |MI|N3 BYTE 3 |M3|M2

FIRST AU N3|N2|N1

HIGHEST OFFSET | M3|M2| N1

6.2 Data File Allocation

A data-file is built out of clusters of contiguous data records. Each data-file can contain up to 76
of those data record clusters. Each data cluster can contain at least one record. The disk software
will allocate as many contiguous records as possible upon request. If a new record is requested,
and no more records can be added to the current contiguous cluster, a new cluster of contiguous
tecords is started. If 76 of those clusters have been allocated, and a new cluster is requested, the
data-records on the disk have become too scattered, and the write-operation in aborted. Worst
case this scheme still allows for a minimum of 19K bytes per file (76X256 bytes).

An additional advantage of this scheme is that each physical record within the file can be
accessed at random, without any need for big areas of contiguous disk space. This means that as
long as the logical records within a file have a fixed length, the file can be accessed either sequentially
or at random. Therefore the disk software does not make any distinction between relative record

22 CHAPTER 6. DETAILED DISKETTE FORMAT SPECIFICATION

or sequential files. Note that this has some implications for sequential fixed length record access,
since now the record number is being used, rather than the current record number and offset.

For variable length records, the length of the logical record will be stored together with the
record itself. This means that, since we do not cross physical record boundaries for any file- or
record-type, the maximum record length for a variable length record file is limited to 2564 bytes.
The end of a AU with variable length records will be marked with an “all ones” byte.

6.3 Program File Allocation

The allocation of a program file is identical to the allocation of a data file. The program segment is
blocked into 256-byte records which are stored as a standard data-file. However, the disk software
will mark a program file as such, and will not allow data access to program files and vice versa.

To avoid any problems with VDP memory wrap-around, the disk software will also note the
actual number of bytes used in the last data record and it will return as many bytes as have been
stored originally, even if this number is not a multiple of 256.

Chapter 7

MEMORY USAGE

Since the disk peripheral software will have to use buffer areas to buffer control information, the
disk software will allocate part of VDP memory for its internal usage. This memory is continuously
allocated and cannot be used by allocation programs, although its size can be changed with a GPL

utility routine.
The allocated VDP memory can roughly be subdivided into three usage categories:

1. Drive control information
2. File allocation information

3. Data buffering

Each of these categories will be discussed in more detail in the next section.

7.1 Drive Control Information

In order to be able to control the disk drive hardware, the software has to know what the current
status of each disk drive is before it can access it. All of this information is readily available, some
through checking the actual current status of the drive.

The power up routine for the disk peripheral also takes initializing the internal track registers
to -1. Whenever a drive is accessed, the internal track register will be loaded into the FD1771 chip,
unless this value is -1, in which case the head is being restored to track zero, which also reinitializes
the FD1771 controller to track zero.

7.2 File Allocation Information

The file allocation information is maintained in the File Control Blocks (FCBs). Each “open” file
has an FCB associated with it.

The information maintained in the FCB is identical to the FDR information described in section
6.1.3. In addition, the disk software also maintains some dynamic information about each file. This
information is stored in front of the standard information (i.e. the FDR starts at FDB location §).
The total length of an FDB is therefore 512+6=>518 bytes, including its 256 byte data buffer (see

next section).

23

24 CHAPTER 7. MEMORY USAGE

The format of the FDR extension is outlined below.

-6 | Current Logical Record Offset on Level 2 | -5
-4 Physical Record Location of FDR -3
-2 | Logical Record Offset | Drive ID -1

The meaning of each entry in this additional information block is:

PHYSICAL RECORD LOCATION OF FDR - Points to the physical sector location of the
FDR on the disk. Imnportant if we ever want to rewrite the FDR on the disk. Even though
not required, it is still maintained during read-only access.

CURRENT LOGICAL RECORD OFFSET ON LEVEL 2 - Contains the physical record
offset of the most recently processed physical record. Independent of READ or WRITE
operations, this entry always contains the logical offset for Level 2 operation of the Data
block that is currently in memory.

Notice that this approach causes fixed length sequential files to be accessed as relative access
files on Level 2.

DRIVE ID - contains the drive number (1-3) of the drive on which the associated file resides. If
the highest entry is set, the current data block has been modified and will have to be writien
back to the disk before closing the file, or accessing a new data block.

LOGICAL RECORD OFFSET - This entry contains the offset of the next logical record in
the current physical record. If, during READ operations, this entry points to a byte count of
>FF, this will indicate an end of record for the current physical record.

This entry is only used for variable length records. For fixed length record access, the actual
position AT and the position within that AU is recomputed before every I/0O operation. The logical
record offset byte is therefore superfluous in this case.

During WRITE operations, this offset always points to the first free byte in the physical record.
If the next logical record would leave less than one byte in the current record, a byte count of >FF
will be written, and the logical record will be located in the next physical record. Note that the
first logical record in a physical record can never cause that physical record to overflow, since the
maximum logical record length is 254, and the physical record is 256.

Following this entry are the areas reserved for the FCBs and the data buffers. Each file has
its own FCD and data buffer associated with it. To simplify the buffer allocation mechanism, the
buffers are not allocated on demand, but rather as soon as a file is opened, an FCB and data buffer
are associated with it for the entire “open” life of the file.

The information contained in the records is as follows:

e An ASCII string up to 10 characters in length containing the name of the file in the specified
directory slot. For record 0 this is the name of the volume.

o A floating point type code between -5 and +5. A negative value means that the file is write
protected. The individual codes are given in Figure 8-1.

e The number of AUs allocated for the file. Record 0 contain the total number of AUs on the
disk.

¢ The number of bytes per logical record. For a program file this program entry is 0. Record
0 contains the remaining number of AUs in this entry.

7.2. FILE ALLOCATION INFORMATION

3FFF

3FF5
3FF4

3EF5
3EF4

SEEF
JEEE

3EEB
3EEA

3DEB
3DEA

3DEA-N*518
3DE9-N*518
3DE8-N*518
3DE6-N*518
3DE5-N*518

Name compare buffer

Volume Information Block

25

Current track 3

Current track 2

Additional info.

Current track 1

Current Disk #

Disk Status info.

VDP Stack Space

Data and File buffer Space

Data Buffer #N

File Control Block #N

Maximum # of files (N)

CRUID

Data Buffer #1

Next Buffer (>3FFF)

 Validity Code (>AA)

- File Control Block #1

Figure 7.1: Disk VDP Memory Buffer Layout

26 CHAPTER 7. MEMORY USAGE

7.3 Data Buffering

For the purpose of data buffering, the disk software will maintain one 265-byte buffer for each
“open” file, located directly above the FCB buffer.

One of the VDP RAM buffers is continuously assigned to VIB processing. In case more than one
drive is used for WRITE mode, the bit maps will be moved in and out of this buffer as demanded
by the disk software. For every bit map operation, this buffer will be used to access the Volume
Information Block.

Every Level 3 WRITE operation to a file will ultimately be passed on to Level 2 as a physical
sector WRITE. To minimize the number of disk accesses, a flag will be set to indicate that the
current data buffer has been modified. The data buffer will only be physically written to the disk
if the next physical record access involves another physical record than the one currently residing
in the data buffer. If the file is closed for further access, the last data buffer will be written on to
the disk if required.

7.4 VDP Memory Layout

The VDP memory layout used for the disk peripheral in 16K VDP RAM system is outlined in
figure 7-1. The memory block in this figure is reserved on power up by special power up code. The
length of the entire area depends upon the maximum number of files that are allowed to be open
at the same time. Fach extra file takes up an extra 518 bytes.

The maximum number of files allowed to be open at the same time, which is initially 3, can be
varied between 1 and 16 by calling a special GPL subprogramn.

As for every peripheral, the disk peripheral identifies the area it reserved through its CRU
address, which is unique for every peripheral. The area is validated with an >AA code followed by
the address of the previous top of memory. Since the disk peripheral has the highest priority on
power up, this entry will always point to the actual top of memory of the machine. However, the
disk software does not use this fact, and will work equally well on other CRU locations.

The first entry behind the CRU ID contains the number of files for which the area has been
reserved. This number directly determines the length of the reserved memory area.

The VDP stack area is used to simulate a stack machine on the TMS 9900. This gives the
programmer the advantage of being able to use the multi-level stack oriented CALL/RETURN
mechanism, rather than the single level BL mechanism used in the TMS 9900. The stack can also
be used to PUSH and POP registers to and from, thereby greatly simplifying register usage.

The disk status information area is used to save the current track numbers of the three drives
and the most recently accessed drive.

The additional information area (6 bytes) is a leftover from a previous implementation and
serves no practical purpose any more. However, since there was a risk involved in removing this
area, it has been left in. For the same reason the stack area has not been optimized to its minimum
size.

The Volume Information Buffer is strictly reserved for VIBs. Only one buffer in the entire
system is reserved for this purpose, although for future implementations one of the file buffers
might be used to store two or more VIBs if not all reserved files are in use.

At the top of memory, an 11-byte buffer is reserved which is used for name comparison. Every
high level entry point automatically saves the drive number and the 10-character file name in this
entry. If less than 10 characters are available, the buffer is automatically padded with spaces.

26 CHAPTER 7. MEMORY USAGE

7.3 Data Buffering

For the purpose of data buffering, the disk software will maintain one 265-byte buffer for each
“open” file, located directly above the FCB buffer.

One of the VDP RAM buffers is continuously assigned to VIB processing. In case more than one
drive is used for WRITE mode, the bit maps will be moved in and out of this buffer as demanded
by the disk software, For every bit map operation, this buffer will be used to access the Volume
Information Block.

Every Level 3 WRITE operation to a file will ultimately be passed on to Level 2 as a physical
sector WRITE. To minimize the number of disk accesses, a flag will be set to indicate that the
current data buffer has been modified. The data buffer will only be physically written to the disk
if the next physical record access involves another physical record than the one currently residing
in the data buffer. If the file is closed for further access, the last data buffer will be written on to
the disk if required.

7.4 VDP Memory Layout

The VDP memory layout used for the disk peripheral in 16K VDP RAM system is outlined in
figure 7-1. The memory block in this figure is reserved on power up by special power up code. The
length of the entire area depends upon the maximum number of files that are allowed to be open
at the same time. Each extra file takes up an extra 518 bytes.

The maximum number of files allowed to be open at the same time, which is initially 3, can be
varied between 1 and 16 by calling a special GPL subprogram.

As for every peripheral, the disk peripheral identifies the area it reserved through its CRU
address, which is unique for every peripheral. The area is validated with an >AA code followed by
the address of the previous top of memory. Since the disk peripheral has the highest priority on
power up, this entry will always point to the actual top of memory of the machine. However, the
disk software does not use this fact, and will work equally well on other CRU locations.

The first entry behind the CRU ID contains the number of files for which the area has been
reserved. This number directly determines the length of the reserved memory area.

The VDP stack area is used to simulate a stack machine on the TMS 9900. This gives the
programmer the advantage of being able to use the multi-level stack oriented CALL/RETURN
mechanism, rather than the single level BL mechanism used in the TMS 9900. The stack can also
be used to PUSH and POP registers to and from, thereby greatly simplifying register usage.

The disk status information area is used to save the current track numbers of the three drives
and the most recently accessed drive.

‘The additional information area (6 bytes) is a leftover from a previous implementation and
serves no practical purpose any more. However, since there was a risk involved in removing this
area, it has been left in. For the same reason the stack area has not been optimized to its minimum
size.

The Volume Information Buffer is strictly reserved for VIBs. Only one buffer in the entire
system is reserved for this purpose, although for future implementations one of the file buffers
might be used to store two or more VIBs if not all reserved files are in use.

At the top of memory, an 11-byte buffer is reserved which is used for name comparison. Every
high level entry point automatically saves the drive number and the 10-character file name in this
entry. If less than 10 characters are available, the buffer is automatically padded with spaces.

Chapter 8

CATALOG FILE ACCESS

In order to enable access to a disk catalog from a user or application program, the CATALOG file
has been added to the disk software.

The CATALOG file is a data file of the INTERNAL/FIXED type. The record length for this
file is 38 bytes. DSKx. or DSK.volname. A standard datafile, but without a name.

The CATALOG file contains 128 records of 38 bytes. The data in this file is stored in an
INTERNAL format (i.e. alength byte followed by a data-item). Each record contains four of those
data-items:

e An ASCII string of up to 10 characters or a null-string

o Three numerics in standard 8-byte floating point notation

Record 0 contains information about the volume itself, whereas records 1-127 contain informa-
tion about specific slots in the catalog., Record 1 contains information about file 1, 2 about file 2,

etc.
If a specified catalog slot is empty, the file name will be the null-string, and all numeric entries
will contain floating zeroes. The following figure shows the codes found in the CATALOG file.

1. Volume info record or empty catalog entry
DISPLAY/FIXED data file

DISPLAY /VARIABLE data file
INTERNAL/FIXED data file
INTERNAL/VARIABLE data file

I U

Memory image file (program)

Table 8.1: CATALOG Type Codes

27

